Despite the availability of antibiotics over the last several decades, excessive antibiotic treatments for bacterial sepsis and meningitis (BSM) in children may result in several adverse outcomes. Hematogenous pathogens may directly induce permeability increases in human brain microvascular endothelial cells (HBMECs) and blood-brain barrier (BBB) d...
Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we use...
Weak electric fields guide cell migration, known as galvanotaxis/electrotaxis. The sensor(s) cells use to detect the fields remain elusive. Here we perform a large-scale screen using an RNAi library targeting ion transporters in human cells. We identify 18 genes that show either defective or increased galvanotaxis after knockdown. Knockdown of the ...
Integrins are activated by signaling from inside the cell (inside-out signaling) through global conformational changes of integrins. We recently discovered that fractalkine activates integrins in the absence of CX3CR1 through the direct binding of fractalkine to a ligand-binding site in the integrin headpiece (site 2) that is distinct from the clas...
Transepithelial potential (TEP) is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, ...
In wound healing and development, large epithelial sheets migrate collectively, in defined directions, and maintain tight cell–cell adhesion. This type of movement ensures an essential function of epithelia, a barrier, which is lost when cells lose connection and move in isolation. Unless wounded, epithelial sheets in cultures normally do not have ...
Small direct current (DC) electric fields (EFs) guide neurite growth and migration of rodent neural stem cells (NSCs). However, this could be species dependent. Therefore, it is critical to investigate how human NSCs (hNSCs) respond to EF before any possible clinical attempt. Aiming to characterize the EF-stimulated and guided migration of hNSCs, w...